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         Outline

♦ Dzero detector 

♦ Determination of the Strong Coupling Constant from 
    Inclusive Jet Production Cross Section.

♦ Double Parton Interactions in +3-jets events; 
    measurements of fraction of Double Parton events and 
    effective cross section eff .

♦ Summary
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  Three main systems
  – Tracker (silicon and scintillating fibers)
  – Calorimeter (LAr/U, some scintillators)
  – Muon chambers and scintillators

                     The Dzero detector        
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Tevatron



End Calorimeter (EC)

Central 
Calorimeter 
(CC)

Coarse 
hadronic (CH) Fine hadronic (FH)

Electromagnetic (EM)
46000 channels            

50 non-working channels

 Liquid argon active medium and (mostly) uranium absorber

 Hermetic with full coverage :|| < 4.2 

 Segmentation (towers):   x   = 0.1x0.1 (0.05x0.05 in 3rd EM layer)

 Three main subregions: Central (||<1.1), Intercryostat (1.1<|| <1.5) 
    and End calorimeters (1.5 < || < 4.2)

 Stable response, good resolution 

                   Overview of the calorimeter
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● We do not “see” partons or particles in 
calorimeter, only ADC counts

● ADC counts --> cell energies
● Run jet cone algorithm with 
     ΔR = √(Δy 2+ΔΦ 2) < Rcone

  Jet energy is corrected to the particle level 
  using the Jet Energy Scale (JES) procedure :
● Calibrate using γ+jets, dijets and Z+jets 
● JES includes: Energy Offset (energy not from the 

hard scattering process); Detector Response
      Out-of-Cone showering; Resolution

              Jets, particles and partons
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   Energy scale uncertainty: 1-2% !



  

• Motivations
• Data set
• Basic fit principle
• PDFs and s 
• PDFs and input data
• Results

                s Determination      
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• s(r) depends on renormalization scale r

 It is not predicted in QCD 
 It should be determined in experiment

• Renormalization Group Equation (RGE) predicts r dependence

• The measured values of s(r) can be evolved to the mass of Z boson 
(common agreement) by using the solution to the 2-loop RGE

   

• In jet production:  r = jet pT

              
                 s and the RGE          

(2- and 3-loop RGE solutions
are used in this analysis)
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From: 2008 Review of Particle Physics

Large uncertainty for entry from 
        “Hadronic Jets” 
    
 Not very competitive with 

other relevant results
 Can (and should) be improved!

Now we have: 
- More and better data
- Better theory

Motivation for Motivation for alpha_sStatus of  s measurements
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D0 inclusive jet results: 110 cross section data points in six |y| regions: 
PRL 101, 062001 (2008)

            Run IIa Inclusive Jet Data    (1)     
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Every single data point is sensitive to s(pT)

 Sensitive to running of s(pT)

 Combined fit (of selected data points): s(Mz) result  

           Run IIa Inclusive Jet Data    (2)      
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● The  systematic errors are significantly reduced due to excellent results of 
   Jet Energy Scale group 
● Overall uncertainties allow now to better distinguish a preferred PDF set



  

• cn:  perturbative coefficients     (→ pQCD matrix elements)
• f1, f2:  PDFs of colliding 

• Cross section formula:

            Basic priciple (naïve version)    
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Determine s  from data:

• Vary s until theory agrees with exper

• ...for each single bin                           →

.

d
dpT

p , p



  

s dependence of PDFs

• PDFs are always determined for a given value of s(Mz)

→ PDF fit results depend on s

Naïve x-section formula must be modified to take s dependence of

PDFs into account: 

 Vary s in matrix elements  AND  in PDFs

 until theory(s) = exper

 Ideally need continuous s dependence of PDFs
 Requires: interpolation between cross section for PDFs 

with different s(Mz) values
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 s dependence of PDFs  (2)

Interpolation must cover whole range of possible uncertainties

→ test interpolation over:   0.105 < s(Mz) < 0.130

• MSTW2008 has 21 PDFs sets (NLO and NNLO!)

        for s within 0.107-0.127  in 0.001 steps   (→ 21 “nodes”)
→ use interpolation for points in between those 21

    → used for the default results

• CTEQ6.6 has five PDFs sets (NLO only)

       for s(Mz)=0.112, 0.114, 0.118, 0.122, 0.125   (5 “nodes”)

     → used for a comparison
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 PDFs and input data    (1)

- Tevatron RunII jet data have already been used in MSTW2008 PDF fits
    → only source of high-x gluon information

• s extraction would be circular argument
• PDFs uncertainties are correlated to experimental uncertainties

(but correlation is not documented)

 Restrict the data set used in the fit to x-values where
Tevatron jets are not the dominant source of information 

 Somewhere up to   x = 0.2-0.3   (see next slide)
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PDFs and input data   (2) 
from MSTW2008 paper   (arXiv:0901.0002 [hep-ph])
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68% C.L.

→ Tevatron jet data do not affect gluon PDF for  x < 0.2 – 0.3



  

PDFs and input data   (3) 

• CTEQ6.6 does not use Tevatron Run II jet data
• But MSTW2008 and CTEQ6.6 results are in agreement for  x<0.3

from MSTW2008 paper   
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x-sensitivity?

What is the x-value for a given incl. jet data point  @(pT, |y|) ?
 Not completely constrained (unknown kinematics since we 

integrate over other jet)
 Construct 'test-variable' (treat as if other jet was at y=0):

Jet cross section has access to x-values of:    (in LO kinematics)

 Apply cut on this test-variable to restrict accessible x-range
 Requirement  x-test < 0.15 removes most of the contributions with x>0.25 

→ 22 points are remaining (4 points for jet pT 50-60, ...,1 point for 130-145 GeV)

test
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Theory

Use two alternative theory predictions:

pQCD:
• NLO + 2-loop threshold corrections   ('NLO + 2-loop')

    (threshold corrections from Kidonakis/Owens)
• NLO
Uncertainties: scale dependence   mu=pT    (+ x0.5 , x2.0)

PDFs:
• MSTW2008NNLO     (for 'NLO+2-loop')
• MSTW2008NLO       (for NLO)
Uncertainties: from 20 PDF eigenvectors   (68%CL)

Non perturbative corrections:  (hadronization / underlying events)
•  from PYTHIA (as published with data)
Uncertainties:  - half the size of the correction

                   - separately for hadronization and underlying events
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Measurement of s(pT)

• Combine points in different |y| regions at same pT

 → Produce 9 s(pT) points from selected 22 data points 

Compare to HERA results
from H1 and ZEUS
 consistency
→ our results extend pT reach 

of HERA results
    to pT range 50-145 GeV

→s is running at the highest  
pT measured so far!

Theory: NLO+2-loop threshold    
             corrections
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Combined s(Mz)

Based on 22 inclusive jet data points with  x-test<0.15

Combined s(Mz):

Main correlated uncertainties: JES, pT-resolution, luminosity
20

s(Mz) =                       NLO + 2-loop threshold corrections

           =                       NLO 

0.1161−0.0048
0.0041

0.1202−0.0059
0.0072



  

Summary on s

  21

D0 Run II jets

New s result from D0 
inclusive jet pT cross sections

   s(Mz) =

→ The only Run II result on s

→ Improvement by about factor 3 
as compared with Run I

→ Comparable precision with 
HERA jets  (0.1189 ±0.0032)

→ Accepted by PRD RC 
(arXiv.org:0911.2710 [hep-ex])

0.1161−0.0048
0.0041



Hadron-Hadron Collision
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Hadron-Hadron Collision
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Hadron-Hadron Collision



Double

Hadron-Hadron Collision: from
 Single to Double parton interactions
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● Motivations

● Event topology

● Discriminating variables

● Fraction of double parton events

● Effective cross-section measurement

● Conclusion

            Double Parton Interactions 
                 in +3 jets events      
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DP   - double parton cross section for processes A and B

eff  - factor characterizing size of effective interaction region      
     
 contains information on the spatial distribution of partons.  
   Uniform: eff is large and DP is small
    Clumpy: eff is small and DP is large

 Needed for precise estimates of background to many rare 
    processes (especially with  multi-jet final state)

 Should be measured in experiment !!  

      

           Double parton and effective cross sections
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DP=
 AB

 eff



Double Parton events as a background to 
Higgs production

● Many Higgs production channel can be mimicked by Double Parton event!
● Some of them can be significant even after signal selections.
● Dedicated cuts are required to increase sensitivity to the Higgs signal 
 (same is true for many other rare processes)!
=> see example of possible variables below (and also 0911.5348[hep-ph])
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     Signal                                                       Double Parton background

Several estimates for LHC: PRD 61 077502; PRD 66 074012; arXiv:0710.0203 



CDF 1997: photon+3jet events, data-driven method: 
To extraxt eff: use of rates of events with Double Interaction (two separate  
collisions) and rates of Double Parton events from a single        collision.

⇒ reduce dependence on MC and NLO QCD theory predictions.

Previous Double Parton measurements
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For two hard scattering events:

The number of Double 
Interaction events:

For one hard interaction:

Then the number of 
Double Parton events:

Therefore one can extract:

P DI=2 
 j

hard
  j j

hard


NDI=2
 j

hard

 j j

hard

NC 2ADI DI 2vtx

PDP=  j

hard
 

j j

eff


NDP=
 j

hard

 j j

eff

NC 1ADP DP 1vtx

eff =
NDI

NDP

N C 1

2NC 2

ADP

ADI

DP

DI

1vtx

2vtx

hard

              

Measurement of eff 
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Signal: Double Parton (DP) production: 
1st parton process produces -jet pair, 
while 2nd  process produces dijet pair.

Background: Single Parton (SP)  production: 
single hard -jet scattering with 2 radiation 
jets in 1vertex events.

Background: Single Parton (SP) production: 
single hard  -jet scattering in one vertex 
with  2 radiation jets and soft unclustered 
energy in the 2nd vertex.

Signal: Double Interaction (DI )production: 
two separate collisions within the same 
beam crossing, producing -jet and dijet pairs.

+3 jets events topology: Double Parton and 
Double Interaction events 
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            DP                      SP

  DI                         SP



 Jet PT: jet from dijets vs. radiation jet 
            from +jet events 

▸ Jet pT from dijets falls much faster than that for radiation jets, i.e.
    FFraction of dijet (Double Parton) events should drop with increasing jet PT
  => Measurement is done in the three bins of 2nd jet pT: 15-20, 20-25, 25-30 GeV

   

   Motivation for jet pT binning

1/pT
4

1/pT
2

~

~
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        Pythia 6.4



Built from D0 data. Samples:
             
A: photon + ≥1 jet from γ+jets data events:
 - 1-vertex events 
-  photon pT: 60-80 GeV
 - leading jet pT>25 GeV, |η|<3.0.

B: ≥1 jets from MinBias events:
 - 1-vertex events
 - jets with pT's recalculated to the primary vertex of sample A 
   have pT>15 GeV and |η|<3.0.

▸ A & B samples have been (randomly) mixed with jets pT re-ordering 
▸ Events should satisfy photon+≥3 jets requirement.
▸ △R(photon, jet1, jet2, jet3)>0.7 

 

 Two scatterings are independent by construction 

                 Double Parton interaction model
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or



Built from D0 data by analogy to Double Parton model with 
the only difference: ingredient events (γ+jets and dijets) 
are 2-vertex events.

In case of  2 jets, both jets are required to originate 
from the same vertex using jet track information.

 

                  Double        Interaction model 

 Main difference of Double Parton and Double      Interaction signal events 
     and corresponding SP backgrounds: different amount of soft unclustered 
     energy in 1-vertex vs. 2-vertex events
     → different photon and jet ID efficiencies.
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p p



In the signal sample most likely (>94%) S-variables 
are minimized by pairing photon with the leading jet.

                      Discriminating variables
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►  angle between two best pT-balancing pairs 
► The pairs should correspond to a minimum 
    S value:



  

    

 

             △S distribution for +3jets events from 
                        Single Parton scattering
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➔ For “+3jets” events from Single Parton scattering we expect S 

to peak at , while it should be flat for “ideal” Double Parton interaction 
(2nd and 3rd jets are from dijet production).



  

                      

                    The two datasets method
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Dataset (a): 2nd jet pT: 15-20 GeV
Dataset (b): 2nd jet pT: 20-25 GeV

Fraction of Double Parton in  
   bin 15-20 GeV (f1) is the only  
   unknown 
 get from minimization.

Data are corrected 
for the DP fractions

Good agreement of 
   Data and DP model

Good agreement of the S
   Single Parton distribution   
  extracted in data and in MC 
   (see previous slide)
another confirmation for
   the found DP fractions.

  Data vs. DP model 
         prediction

   Data prediction for   
          SP events



  

 

Fractions drop from ~46-48% at 2nd jet 15<pT<20 GeV to ~22-23% at 
2nd jet 25<pT<30 GeV with relative uncertainties ~7-12%.

                      Fractions of Double Parton events

   
   38



  

                     Fractions of Double Parton events : 
           MPI models and D0 data

● Pythia MPI tunes A and S0 are 
 considered.

● Data are in between the model
  predictions.

● Results are preliminary: data
  should be corrected to the 
  particle level.

● Will be done later to find 
  the best MPI Tune
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D0 preliminary



To calculate eff, we also need NDI = fDI N2vtx.

 use ∆S shapes and get fDI by fitting DI signal and background distributions  
     to 2-vertex data

Fractions of Double      Interactions (DI) events

Total sum of DI signal+bkgd, weighted 
with DI fractions, is in agreement with data

Main uncertainties in DI fractions are from 
building DI signal and background models  
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Total numbers of  events with 1 and 2 hard         collisions, Nc(1) and Nc(2),
are calculated from the expected average number of hard interactions 
at a given instantaneous luminosity Linst:

using Poisson statistics.
f0 is a frequency of the beam crossings at the Tevatron in RunII.
hard is hard (non-elastic, non-diffractive)         cross section.
It is 44.72.9 mb : from Run I → Run II extrapolation.

Variation of hard within uncertainty (2.9 mb) gives the uncertainty for Rc of

just about 1.0 mb: increase of hard leads to decrease of Nc(1)/Nc(2) and vice versa.

n=L inst /f 0hard

                    Calculation of Nc(n) and hard  

RC=
NC1

2NC 2
hard=52.3mb
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● eff values in different jet pT bins agree 
  with each other within their uncertainties
(also compatible with a slow decrease with pT).

● Uncertainties have very small correlations
  between jet2 pT bins. 
● One can calculate the averaged (weighted by 
  uncertainties) values over jet2 pT bins:

eff
ave

=16.4±0.3stat ±2.3syst mb

Main systematic and statistical uncertainties (in %) for eff.

                          Calculation of eff
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D0 Preliminary



We have measured:
• Fraction of Double Parton events in three pT bins of 2nd jet : 15-20, 20-25, 
  25-30 GeV. It varies from about 0.47 at 15-20 GeV to 0.22 at 25-30 GeV.

• Effective cross section (process-independent, defines rate of Double Parton 
   events) eff has been measured in the same jet pT bins with average 
   value:

• The found eff is in the range of those found in CDF measurements 
   at lower scales
    it might indicate a stable behaviour w.r.t. the energy scales 
        in the parton scatterings.
  
• Double Parton production can be a significant background to many rare 
   processes, especially with multi-jet final state. A choice of the dedicated   
   variables is advised. It also necessitates tuning of MC generators, for
   which these results should be very helpful.

eff
ave=16.4±0.3stat ±2.3syst mb

                                        Summary                          (1)
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New s result from Tevatron 
inclusive jet pT cross sections

  s(Mz)  = 0.1161−0.0048
0.0041

D0 Run II jets

→ Considerable improvement in 
    comparison with accuracy of 
    Run I jet result     
→ Similar precision as HERA jets  
    (0.1189 ±0.0032)
→ Good agreement with the world
    average: 0.1184  ± 0.0007

                                        Summary                          (2)
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BACK­UP SLIDES



  

Comparison of +3 jets measurements: 
CDF'97 vs. D0'09

 Center of mass energy : 1.8  → 1.96 TeV

 About a factor 60 increase in the intergrated luminosity allows
    to change selections:
    photon pT > 16 GeV  (CDF)    60 < pT < 80 GeV (D0)
     A better separation of 2 partonic scatterings in the momentum space
     A higher photon purity (due to also tighter photon ID)
     A better determination of energy scales of 1st parton process

 Higher jet pTs and JES correction to the particle level 
     Jet pT (uncorr.) > 6 GeV   pT (corr.) > 15 GeV

 Binning in the 2nd jet pT : 15 - 20; 20 - 25, 25 – 30 GeV
     A better determination of energy scales of 2nd process
     Study of Double Parton fractions and eff vs. 2nd jet pT

 Double Parton fractions and eff are inclusive: we do not subtract 
    fractions of events with triple parton interactions.
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●  Correlations between PDFs are possible and may even increase 
   DP cross section at large (≥W/Z mass) factorization scales (10-40%!):
  – A.M. Snigirev et al : PRD68 (2003)114012, PLB 594(2004)171
  – D. Treleani et al     : PRD72 (2005)034032

● Direct account   of PDFs is in DP PDF (!): first evolution equations for  
  dPDF (extension of sPDF) --> J.Gaunt and J.Stirling, 0910.4347 [hep-ph]

dDGLAP evolution: 
if the two-parton distributions are factorized at some scale 0

G(x1,x2,0) = G(x1,0)*G(x2,0)
then the evolution violates this factorization inevitably at any diff. scale   
0:

G(x1,x2,) = G(x1,)*G(x2,) + R(x1,x2,)
where R(x1,x2,) is a correlation term.

[eff
exp

]
−1
=[ eff ]

−1
1

                             PDF correlations and eff 
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             Models of parton spatial density and eff 

- eff is directly related with parameters of models of parton spatial density 

-  Three models have been considered: Solid sphere, Gaussian and Exponential.

1
 eff

=
3

8 Rrms
2

1Corr.

– The rms-radia above are calculated w/o account of possible parton spatial correlations.
   For example, for the Gaussian model one can  write [Trleani, Galucci, 0901.3089,hep-ph]:

- If we have rms-radia from some other source, one can estimate the size of the spatial 
  correlations
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Introducing the 3D parton density(x,b and making the assumption 
(x,b)=G(x)f(b) one may express the single scattering inclusive cross section as

where  is effective cross section

and  f(b) is the density of partons in transverse space.

      Parton spatial density and eff  
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  1st and 2nd interactions: Estimates of possible correlations 

=> Simulate +3 jets and di-jets with switched off ISR/FSR; then additional 
       2 jets in +3 jets should be from 2nd parton interaction
=> compare 2nd (3rd) jets pT/Eta  in +3 jets with 1st (2nd )jet pT/Eta in dijets
      

... at the fragmentation stage :
                              

... in the momentum space:

  large (almost unlimitted) kinematic space for the 2nd interaction 

From D.Wicke &
         P.Skands
hep-ph:0807.3248

=>Tunes tested: A, A-CR, S0

1st interaction:  photon pT ≃ 70 GeV,  parton xT ≃ 0.07 
2nd interaction:        jet pT ≃ 20 GeV,  parton xT ≃ 0.02 
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           Tune A

 pT and Eta distributions are analogous for jets from 2nd interaction in +3jets and di-jet   
  events
 Analogous results (incl. 3rd jet from +3jets and 2nd from di-jets) are obtained for 
   Tunes A-CR, S0. 

        +3 jets and di-jets, IFSR=OFF: jets pT comparison. 
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 +3 jets and di-jets, IFSR=OFF: jets pT comparison. 

 Tune A-CR
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         Pythia MPI Tunes: S and Njets

- S is much broader for events with MPI events and almost flat at S < 1.5
- #events(Njest1) / #events(Njets3) is larger by a factor 2(!) for MPI events

Pythia predictions with MPI tunes:
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SP events (Pythia): S distributions
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VERTEX:          
- |Z|<60cm,                                                 
- Ntrk>=3                                                

JETS (pT corrected):
- Midpoint Cone algo with R=0.7
- |η|<3.0
- #jets ≥ 3
- pT of any jet > 15 GeV
- pT of leading jet > 25 GeV
- pT of 2nd jet∈(15,20), (20,25), (25,30) GeV.

PHOTONS:
- photons with |η|<1.0 and 1.5<|η|< 2.5
- 60< pT< 80 GeV (good separation of 1st and 2nd parton interactions)
- Shower shape cuts
- Calo isolation (0.2< dR <0.4) < 0.07
- Track isolation (0.05< dR <0.4) < 1.5 GeV 
- Track matching probability < 0.001

- R(any objects pair)>0.7

     SELECTION CRITERIA              
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